Exercise 1.38

(a) After the label fell off a bottle containing a clear liquid believed to be benzene, a chemist measured the density of the liquid to verify its identity. A $25.0-\mathrm{mL}$ portion of the liquid had a mass of 21.95 g . A chemistry handbook lists the density of benzene at $15^{\circ} \mathrm{C}$ as $0.8787 \mathrm{~g} / \mathrm{mL}$. Is the calculated density in agreement with the tabulated value? (b) An experiment requires 15.0 g of cyclohexane, whose density at $25^{\circ} \mathrm{C}$ is $0.7781 \mathrm{~g} / \mathrm{mL}$. What volume of cyclohexane should be used? (c) A spherical ball of lead has a diameter of 5.0 cm . What is the mass of the sphere if lead has a density of $11.34 \mathrm{~g} / \mathrm{cm}^{3}$? (The volume of a sphere is (4/3) πr^{3}, where r is the radius.)

Solution

Part (a)

The density of the liquid is

$$
\text { density }=\frac{\text { mass }}{\text { volume }}=\frac{21.95 \mathrm{~g}}{25.0 \mathrm{~mL}}=0.878 \frac{\mathrm{~g}}{\mathrm{~mL}} .
$$

The calculated density is in agreement with the tabulated value.

Part (b)

The volume of cyclohexane is

$$
\text { volume }=\frac{\text { mass }}{\text { density }}=\frac{15.0 \not \subset}{0.7781 \frac{\phi}{\frac{\phi}{\mathrm{~mL}}}} \approx 19.3 \mathrm{~mL} .
$$

Part (c)

The mass of lead is

$$
\text { mass }=\text { density } \times \text { volume }=11.34 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}} \times \frac{4}{3} \pi\left(\frac{5.0 \mathrm{~cm}}{2}\right)^{3} \approx 7.4 \times 10^{2} \mathrm{~g}
$$

